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Abstract The aim of this study was to investigate the role

played by the factors, such as altered vasoreactivity of

resistance vessels in different body regions, and depressed

cardiac contractility in the genesis of postflight cardiovascular

dysfunction. The model we used is based on the model

developed by Mechior et al. (1994) with modification by

incorporating into the model, some more detailed sub-models

to describe blood redistribution, cardiac contractility, local

vascular tone changes, and baroreflex control mechanism. The

simulated cardiovascular response to LBNP, HUT, and

+Gz(low level) stresses have been shown to compare well with

the relevant experimental data. Further computer simulation

studies were performed to assess the contributions of each

factor on cardiovascular dysfunction postflight. The simulation

demonstrated that both the hypovolemia and depressed cardiac

contractility elicit obvious changes in cardiovascular responses

to orthostatic stress. Although an increase in vasoconstrictor

responsiveness of brain vessels does not elicit significant

changes for the main hemodynamic variables, the cerebral

blood flow is decreased dramatically. However, if the

vasoreactivity of brain vessels kept unchanged, the decrease in

vascular tone of vessels in lower body does not cause significant

changes in cerebral blood flow.

Key words Cardiovascular system, computer simulation,
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I. INTRODUCTION

Othostatic intolerance (OI) following exposure to
microgravity or head-down bed rest is frequently observed
and is thought to be multifactorial origin[1,2]. Although
hypovolemia is considered as the primary cause of OI, the
role played by other factors, such as the lowered
vasoconstrictor responsiveness (VCR) of resistance vessels,
the enhanced vasoconstriction response of cerebral vessels,
and the depressed myocardial contractility need to be
elucidated[3,4]. It is difficult to assess experimentally how
each of these changes would affect orthostatic tolerance and
how these factors interact with each other. An alternative

approach is to conduct simulation studies by use of
mathematical models of cardiovascular system (CVS)
capable of simulating the CVS response to orthostatic stress.
This presentation describes the construction of the model
used, and presents the preliminary simulation results
illustrating the effects of varying individually the level of
hypovolemia, VCR of the resistance vessels in lower limbs
and abdominal viscera, VCR of the brain vessels or
myocardial contractility on responses to orthostatic stress.
The ultimate goal of our work was to integrate the new
experimental findings and to simulate the complexity to get
a thorough understanding of the mechanism of postflight
cardiovascular dysfunction and orthostatic intolerance.

II. METHOD

 1) Model Description Based on the previous work of
Melchior et al[5], we have developed a mathematical model
by incorporating some more detailed sub-models to describe
blood redistribution, cardiac contractility, peripheral
circulation, local vascular tone changes, and baroreflex
control mechanism[6,7] (Fig. 1). Here we briefly review the
main points of the model. More detailed descriptions of the
model have been given in previous work [6, 7]

Because the arteries and capillaries are much less
compliant than the veins, we assumed that blood volume
redistribution during LBNP takes place only in the venous
beds. Venous blood volume is considered to be stored in
seven different compartments representing the head and up-
limbs (HUL), thoracic region (THO), abdomen region
(ABD), pelvis and buttocks (PB), thigh (THI), calf (CAL)
and foots (FT). We considered the phenomena of collapse of
venous vessels during negative transmural pressure and
employed two tangent functions to describe the P-V
relations of each compartment.
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where i= HUL, THO, ABD, PB, THI, CAL and FT; Ci 0 is

(∆Pi trans>0)
   
(∆Pi trans<0)
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the compliance for the small variations of ∆Pi trans, ∆Vim+ and
∆Vim- are the maximal increment and decrement of each
compartment.

We used the work of Melchior et al.[5] to correlated
∆CVP and left ventricular end-diastolic volume (VLVED)
during LBNP, then

)]Vexp()V[exp(CVP LVED0LVED ⋅β−⋅β⋅λ=∆

where λ is a constant and β is left ventricular elastic stiffness.

Fig1 Block diagram of the cardiovascular model
The heart rate and venous tone are modulated by the

carotid baroreceptors, whereas the peripheral resistance is
regulated by both carotid and cardiopulmomary
baroreceptors. The model was validated for simulation of the
CVS response to exposure of LBNP, or HUT by the data
obtained from human experiment and published data [6, 7].

2) Simulation Procedure  By use of the developed
model, CVS responses to LBNP were simulated separately
for each of the four kinds of  physiologic changes that
occurred in the simulated subject. The changes were: 1)
decrease of blood volume; 2) 12% decrease of blood volume
plus decrease of VCR of resistance vessels in abdominal
viscera and lower limbs; 3) 12% decrease of blood volume
plus 30% decrease of VCR of resistance vessels in lower

limbs and abdominal viscera plus enhanced vasoconstriction
of cerebral vessels; 4) 12% decrease of blood volume
combined with decrease of myocardial contractility. The
simulation model was programmed with MATLAB language
and implemented in an IBM compatible personal computer.

III. RESULTS

1) Effects of blood volume decrease The more decrease
of blood volume, the more changes will be (fig 2). If the
amount of the decrease of blood volume is less than 5% of
the total blood volume, HR and BP can be completely
maintained in their physiological range by the regulation of
baroreflex during orthostatic stress exposure. If the amount
of the decrease of blood volume is more than 15% of the
total blood volume, the hemodynamic variables can be in
normal range when the simulated subject is in supine and at
rest. However, the BP falls steeply and CVS might collapse
with orthostactic stress (even if the intensity of the stress is
relatively low). Shock Index (SI, SI=HR/SBP) will be greater
than 1.0 (no shock occurs) during LBNP stresses if the
decrease of blood volume is more than 15% of the total
blood volume.

2) Effects of decrease of VCR of resistance vessels in
lower body   Simulation results indicated that the decrease
of VCR of resistance vessels in lower body affected
insignificantly on HR and BP during LBNP exposure.

Fig2 Effects of hypovolemia on HR, BP and Shock Index response to supine LBNP
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3) Effects of enhanced vasoconstrictor of cerebral
vessels   The simulation results suggested that the enhanced
vasoconstriction response of cerebral vessels result in a
significant decrease of cerebral blood flow velocities,
although it did not elicit obvious changes in  HR and BP
(fig 3).

4) Effects of depressed myocardial contractility
Significant increase of HR and decrease of BP can be seen
when cardiac contractility is depressed (Tab 1).
Table 1 Effect of depressed myocardial contractility (∆MC)

on CVS response to LBNP (-50mmHg)
∆MC
(%)

HR
(bpm)

SBP
(mmHg)

DBP
(mmHg)

CO
(L/min)

0 131 93 76.1 4.15

-10 139 90 75.2 3.88

-20 150 88 72.3 3.66

As shown in Fig 4, the augment of HR is increased
significantly as LBNP and myocardia contractility is
decreased. The decrement of SBP is reduced progressively
with the decrement of myocardia contractility. However,
DBP is increased slightly when myocardia contractility is
decreased slightly with low level LBNP. But if the decrement
of myocardia contractility is over 10%, DBP decreases

sharply with the increment of LBNP exposure, and the
system seemed to run into collapse. Also CO is decreased
with the decrement of myocardia contractility and increment
of LBNP. It is obvious that CO tends to a steady level when
both the decreases of myocardia contractility and LBNP are
high.

IV. DISCUSSION

Our simulation results show that both the hypovolemia
and depressed myocardial contractility might elicit obvious
changes in cardiovascular responses to orthostatic stress.
Although an increase in vasoconstrictor responsiveness of
brain vessels does not elicit significant changes for the main
hemodynamic variables, the cerebral blood flow is decreased
dramatically. However, if the vasoreactivity of brain vessels
kept unchanged, the decrease in vascular tone of vessels in
lower body would not cause significant changes in cerebral
blood flow. These results suggest that the role of changes of
vasoreactivity in the OI need to be further elucidated. What
we presented is a preliminary result. Further improvement of
the present model is needed to incorporate subsystems
describing the adaptive changes, hemodynamics, heart
performance, and regional circulation during microgravity
base on new experimental findings.
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Fig3 Effect of enhanced vasoconstriction of cerebral vessels
 on CBF, BP and HR response to supine LBNP
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